
Does blending of chlorophyll data bias
temporal trend?
ARISING FROM D. G. Boyce, M. R. Lewis & B. Worm Nature 466, 591–596 (2010)

Phytoplankton account for about half of global and nearly all of
marine primary productivity; consequently, any widespread drop in
phytoplankton biomass would almost certainly have severe ecological
consequences. Boyce et al.1 have reported strong (,1% per year) and
sustained declines in marine phytoplankton biomass at local, regional
and global scales. However, I suggest that some or much of their
reported declines are attributable to bias between the two data types
used by Boyce et al.1. Although real changes may have occurred, their
proper quantification requires removal of the bias component.

To obtain a larger and longer data set, Boyce et al.1 pooled estimates
of local chlorophyll concentration derived from two very different sets
of measurements: water transparency-based estimates of chlorophyll
concentration CT, and direct measurements of chlorophyll, CI, from
in situ profiles. In the former case, Secchi depth2 (D) is converted to CT

by global application of a previously published3 fit, CT 5 457 D22.37.
Blending of data types can introduce error unless their expected
values E(CT) and E(CI) are the same at corresponding locations and
times. To test their similarity, Boyce et al.1 compared a large number
of space- and time-matched CI and CT estimates. They show (supple-
mentary figure 2 in ref. 1, reproduced here as Fig. 1a) that, across very
large total ranges, logCI and logCT are strongly correlated (r2 < 0.6)
and that expected values fit the equation

E(logCT) 5 0.18 1 (1.08 6 0.016) E(logCI) (1)

Boyce et al.1 reported that the CI versus CT relationship has ‘linear
scaling’ with slope near 1.0, and assumed that CT and CI estimates were
similar enough to combine without further treatment. But quantifica-
tion of interannual variability (perhaps factor of 2–3 range) is likely to
be more sensitive to bias (perhaps factor of 1.2–1.5, see later) than are
the very strong (factor of 10–100) regional and seasonal signals that
dominate total variance. When equation (1) is back-transformed to
linear scale (Methods), the resulting equations are power law with
slopes very different from 1.0 (after the back transformation, it is the
exponent, not the slope, that is ,1.0):

E(CT) 5 1.51 (CI)
1.08 (2)

and/or

E(CI) 5 0.66 (CT)0.926 (3)

A key consequence is that E(CT) is larger than E(CI) throughout the
range of observations (Fig. 1b). The positive bias of CT relative to CI is
25–50% for CI between 0.1–1.0 (most of the data). Because the exponent
is .1, bias increases at higher chlorophyll concentrations. The differ-
ence of expected values can interact with the long-term trend in a mix of
samples (mostly CT early, mostly CI later, Fig. 1c and figure 1a in ref. 1)
to cause a trend in the blended mean that confounds/adds to any real
temporal change of chlorophyll concentration. To isolate and illustrate
this biased trend, I use an artificial ‘constant chlorophyll’ blended time
series (Methods) in which CT and CI are time invariant, and the only
time dependence is the amount of each data type per year (taken from
figure 1 in ref. 1). Figure 1c shows within-year averages, plus the linear
regression of all data on year. Years before 1965 are strongly dominated
by CT and have annual averages of ,0.7 (due to small n, years before
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Figure 1 | Evidence for bias between the transparency-based and in-situ
estimates of chlorophyll concentration used by Boyce et al.1. a, Log-log
scatterplot of space- and time-matched transparency-based (CT) and in situ
(CI) estimates of chlorophyll (Chl) concentration. Pixel colour indicates data
density. Red line is the log-log Model II fit. Black line is CT 5 CI. Reproduced
with permission from Boyce et al.1. b, Ratio of E(CT):E(CI) versus log-scale CI,
showing that CT has positive bias throughout the range of observations. Red
line is from the log-log fit. Shaded ellipse shows the range containing most
observations. Blue star marks the CT 5 0.716, CI 5 0.5 pair used in the temporal
bias calculation in c. c, Temporal bias of a ‘constant chlorophyll’ blended time
series caused by interaction between (E(CT) . E(CI)) and trends in the mixture
of data source types. Dashed lines show the values for all individual data points
(either CI or CT). Red and black column graphs (from figure 1a in ref. 1) show
relative abundance of CI and CT per year. Circles are annual blended means.
Black line is the linear trend of all data versus year.
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1933 have little influence on the regression). After ,1970, CI estimates
become increasingly dominant, and annual averages approach 0.5. In
this artificial example, the changing blended mean and the C versus year
regression are both entirely attributable to bias. However, the fitted
regression slope (20.003 mg chlorophyll yr21 or ,0.5% yr21) is a very
significant fraction of the ,1% yr21 trends reported by Boyce et al.1.

I stress that my argument is not a denial of any long-term change, but
only that the trends described by Boyce et al.1 include an important
negative bias that should be removed to improve the estimation of
underlying real changes. One way to do this is to rescale individual CT

such that the expected value of the ‘new’ estimate CT9 equals local E(CI).
Boyce et al. could globally apply CT9 5 0.66 (CT)0.926 (adapted from
equation (3)) and then repeat their analysis, substituting CT9 for CT. A
more complex approach could apply region- and level-optimized Secchi-
to-CT9 functions. Either approach is a more convincing filter than the
examination of residuals from original fit used by Boyce et al.1, because
their original fit included any bias as part of its total temporal trend.

METHODS
Log-scale to linear-scale transformation. If E(logCT) 5 a 1 b(logE(CI)), then
E(CT) < 10a 3 E(CI)

b, where 10a is the multiplicative slope at CI 5 1.0 (.1 if
a . 0), and b describes curvature (.1 5 concave up, ,1 5 concave down).
Temporal bias of blended ‘constant chlorophyll’ time series. CT and CI esti-
mates for a single ‘real’ chlorophyll concentration were replicated from a point

(blue stars in Fig. 1a, b) on the CT versus CI regression line located near the
centroid. These artificial data were distributed across the years 1899–2008 to
match frequency histograms from figure 1a in ref. 1. Note that data are constant
within type across years, but differ by their expected values at this point
(CT 5 0.716, CI 5 0.5). The resulting time series was summarized in two ways
(Fig. 1c): data were averaged within year to produce a time series of blended
means (circles in Fig. 1c) and a C versus year linear regression was calculated
using the individual data estimates (line in Fig. 1c).
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A measured look at ocean chlorophyll trends
ARISING FROM D. G. Boyce, M. R. Lewis & B. Worm Nature 466, 591–596 (2010)

Identifying major changes in global ecosystem properties is essential to
improve our understanding of biological responses to climate forcing
and exploitation. Recently, Boyce et al.1 reported an alarming, century-
long decline in marine phytoplankton biomass of 1% per year, which
would imply major changes in ocean circulation, ecosystem processes
and biogeochemical cycling over the period and have significant
implications for management of marine fisheries. Closer examination
reveals that time-dependent changes in sampling methodology com-
bined with a consistent bias in the relationship between in situ
and transparency-derived chlorophyll (Chl) measurements generate a
spurious trend in the synthesis of phytoplankton estimates used by Boyce
et al.1. Our results indicate that much, if not all, of the century-long
decline reported by Boyce et al.1 is attributable to this temporal sampling
bias and not to a global decrease in phytoplankton biomass.

The optical properties of natural seawater are dependent on the con-
centrations of three main constituents: phytoplankton and other organic
particles, inorganic mineral particles and coloured dissolved organic
matter2. Variations in both the optical properties and relative abundance
of these constituents prevent application of a single equation to accurately
estimate phytoplankton concentration from ocean transparency for the
global ocean3. The equation applied by Boyce et al.1 to convert from
transparency (Secchi-disk measurements) to Chl consistently overesti-
mates Chl concentrations compared to in situ measurements (log10

Chltransparency 5 0.18 1 1.08 3 (log10 Chlin-situ); see supplementary figure
2a in ref. 1). The regression equation Boyce et al.1 use between the two
methods of measurement indicates that the bias is greater for increas-
ing Chl concentrations. This overestimate of Chl ranges from about 5%
at low concentrations to .100% at higher concentrations (Fig. 1).
Given the approximate global distribution of Chl concentrations, the
median bias between the two sampling methods is about 35%. Because
the blended Chl database used by Boyce et al.1 contains a long-term
trend in sampling instrumentation (with the portion of estimates

derived from transparency gradually dropping from ,100% before
1955 to ,15% after 1995; see figure 1a in ref. 1), a spurious, long-term
decline in estimated Chl is introduced over the length of the data set.

To examine whether the trends reported by Boyce et al.1 could
be attributed to biases introduced by these changes in sampling
instrumentation, we generated a synthetic data set of global Chl
with no time-dependent trend in the underlying Chl concentra-
tion (1997–2009 monthly climatology of 9-km SeaWiFS Chl4). We
then ‘sampled’ this Chl climatology according to the measurement
efforts (instrumentation, location and time of year) recorded in the
publicly available data sets used by Boyce et al.1 (number of unique

–1.5 –1.0 –0.5 0 0.5 1.0
0

0.02

0.04

0.06

0.08

0.10

0.12

P
o

rtio
n
 o

f g
lo

b
a
l o

c
e
a
n

1.0

1.2

1.4

1.6

1.8

2.0

Log10 in situ Chl concentration (mg m–3)

R
a
ti
o

 o
f 

tr
a
n
s
p

a
re

n
c
y
 t

o

in
 s

itu
 C

h
l 
e
s
ti
m

a
te

s
 

Bias in Boyce et al.
data set

Figure 1 | Bias between transparency and in situ estimates of Chl in the
blended data set of Boyce et al.1. When the bias is re-plotted with reference to
the ratio between the transparency estimates and in situ estimates, the
overestimate of the transparency method is apparent (red line and left axis).
The dotted line is the 1-to-1 relationship assumed by Boyce et al.1. The
histogram (grey bars and right axis) shows the approximate global distribution
of Chl concentrations4 in the surface ocean.

BRIEF COMMUNICATIONS ARISING

1 4 A P R I L 2 0 1 1 | V O L 4 7 2 | N A T U R E | E 5

Macmillan Publishers Limited. All rights reserved©2011

mailto:dboyce@dal.ca


measurements 5 451,887). For Chl measurements estimated by trans-
parency, we included the bias in our synthetic data set according to the
regression equation used by Boyce et al.1 relating in situ and transpar-
ency estimates of Chl. This allows independent assessment of the trend
in the blended data set that was introduced by century-long changes in
sampling instrumentation. We binned the synthetic Chl record into
10u3 10u ocean cells1 and estimated the mean instantaneous rate of
Chl change to generate a map of the spurious, local scale trends in Chl
resulting from sampling bias (Fig. 2). This map resembles figure 2a in
ref. 1, with 81% of the cells showing a decline in Chl and the largest
spatial areas of decline in the North Pacific, North Atlantic and Arctic
Oceans. The Indian Ocean is the only broad region in which the num-
ber of transparency measurements relative to in situ measurements has
increased over time, inducing a positive bias in the regional Chl trend.
The globally averaged rate of Chl decline in our synthetic data set was
20.007 mg m23 yr21, indicating that sampling biases induce a long-
term trend similar in magnitude and spatial distribution to the 1% yr21

decline in Chl reported by Boyce et al.1.
Investigation of large-scale and long-term changes in biogeochemical

cycling, physical climate properties and the condition of the world’s
ecosystems is of increasing importance as we are faced with the
challenges of detection, attribution and adaptation in the face of
anthropogenic global change. Boyce et al.1 should be commended
for their effort to address this critical issue, but the long-term decline
in global Chl they report is probably an artefact of sampling methodo-
logy. This dialogue emphasizes the need for ongoing observations of
marine ecosystems and prudent examination of historical data sets.
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Is there a decline in marine phytoplankton?
ARISING FROM D. G. Boyce, M. R. Lewis & B. Worm Nature 466, 591–596 (2010)

Phytoplankton account for approximately 50% of global primary
production, form the trophic base of nearly all marine ecosystems,
are fundamental in trophic energy transfer and have key roles in
climate regulation, carbon sequestration and oxygen production.
Boyce et al.1 compiled a chlorophyll index by combining in situ
chlorophyll and Secchi disk depth measurements that spanned a more
than 100-year time period and showed a decrease in marine phyto-
plankton biomass of approximately 1% of the global median per year
over the past century. Eight decades of data on phytoplankton bio-
mass collected in the North Atlantic by the Continuous Plankton
Recorder (CPR) survey2, however, show an increase in an index of
chlorophyll (Phytoplankton Colour Index) in both the Northeast and
Northwest Atlantic basins3–7 (Fig. 1), and other long-term time series,
including the Hawaii Ocean Time-series (HOT)8, the Bermuda
Atlantic Time Series (BATS)8 and the California Cooperative
Oceanic Fisheries Investigations (CalCOFI)9 also indicate increased
phytoplankton biomass over the last 20–50 years. These findings,
which were not discussed by Boyce et al.1, are not in accordance with
their conclusions and illustrate the importance of using consistent
observations when estimating long-term trends.

Since 1931 more than 5 million nautical miles of ocean have been
sampled by ships of opportunity towing the CPR and more than 250,000
phyto- and zooplankton samples, including the Phytoplankton Colour

Index (PCI), analysed using a virtually unchanged methodology10.
Although the CPR’s mesh size is 270mm, the device consistently collects
small cells—such as coccolithophores—on the silk10; with recent work
indicating that the relative contribution of smaller size fractions to the
PCI is increasing in some regions11. The PCI also accounts for fragile,
broken and fragmented cells that contribute to phytoplankton biomass
but are not morphologically identifiable. PCI has repeatedly been suc-
cessfully intercalibrated with measurements of chlorophyll from the
SeaWiFS6,7 satellite sensor and, in contrast to the findings of Boyce et
al.1, shows an increase in phytoplankton biomass throughout much of
the North Atlantic (Fig. 1).

For the first 50 years of the Boyce et al.1 time series, the majority of the
chlorophyll estimates were derived from Secchi measurements; later,
chlorophyll sampling became a standard oceanographic procedure and
after 1980 most of the data were from in situ chlorophyll measurements.
The ‘mixed’ data set of Boyce et al.1 does not take into account the fact
that the relationship between Secchi depth visibility and chlorophyll
concentration may not be spatially or temporally uniform12, and may
therefore be biased. Boyce et al.1 use chlorophyll measurements (and
presumably Secchi depth readings, although this is unclear) from the
top 20 m of the water column. This coincides well with the CPR
sampling depth, but does not take into account the high levels of chloro-
phyll found in the deep chlorophyll maximum. The Secchi–chlorophyll

–0.4 –0.2 0 0.2 0.4
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Figure 2 | Spurious trends in the blended Chl database introduced by time-
dependent changes in sampling instrumentation. Regions in which the time
period of sampling spanned ,15 years (white cells) were excluded from the
analysis, and areas in which changes in Chl sampling instrumentation
introduced no bias are marked with a diagonal.
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relationship is debatable for another reason: everywhere, even in oligo-
trophic ocean regions, Secchi disk visibility is influenced by non-living
suspended particles and by ‘gilvin’ (dissolved organic matter), not only
by phytoplankton-containing pigments—of which chlorophyll is only
one. The high chlorophyll values at the beginning of the time series in
figure 4a in ref. 1 are derived mostly from Secchi observations. If these
are excluded, the trend in the chlorophyll index changes to positive in
the North Atlantic, Equatorial Atlantic, South Atlantic, North Pacific
and South Pacific. These post-1980 trends are consistent with results
from other sustained monitoring programmes such as HOT8, BATS8

and CalCOFI9, as well as the CPR survey. The increasing trend in
chlorophyll in the 1980s for the North Atlantic is also clear in the
satellite observation records cited by Boyce et al.1 (see figure 2 in ref.
13 and figure 7 in ref. 14).

On the basis of the data from the CPR survey and the BATS pro-
gramme, chlorophyll in the North Atlantic is shown to be increasing,
especially after 1980. This increase is also seen in long-term time series
from the North Pacific (HOT, CalCOFI). This considerable body of data
contrastswiththe resultspresented by Boyce etal.1; it indicates that there is
no strong evidence for a marked decline in global marine phytoplankton.

METHODS
CPR samples are collected by a high-speed plankton recorder (,9–23 knots)
towed in the mixed surface layer of the ocean (,10 m depth); one sample repre-
sents 18 km of tow. Water passes through the recorder, and plankton are filtered
by a slow moving silk band (mesh size 270mm). A second layer of silk covers the
first and both are reeled into a tank containing 4% formaldehyde. The PCI is
based on a relative scale of greenness caused by accumulation of phytoplankton
cells on the silk, and determined by reference to a standard colour chart10.
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Figure 1 | Results from the CPR survey show increased phytoplankton in
most regions of the North Atlantic. a, Sub-regions, based on CPR Standard
Areas, used to illustrate long-term regional variability of phytoplankton trends.
b, Trends in the PCI in the North Atlantic from 1946–2008. Only years with .7
months of data were used in trend calculation. The reduction in the PCI after
1995 in the eastern central North Atlantic is attributed to changes in the
strength and extent of the subpolar gyre15.
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Boyce et al. reply
REPLYINGTO A.McQuatters-Gollopet al. Nature 472, doi:10.1038/nature09950 (2011); D. L. MackasNature 472, doi:10.1038/nature09951 (2011);
R. R. Rykaczewski & J. P. Dunne Nature 472, doi:10.1038/nature09952 (2011)

In their thoughtful responses to our article on global chlorophyll (Chl)
trends1, Mackas2, Rykaczewski and Dunne3, and McQuatters et al.7

suggest that some of the variation observed in our analysis may be
explained by a possible bias, whereby transparency-derived chloro-
phyll (CT) measurements overestimate phytoplankton abundance
relative to direct in situ chlorophyll (CI) measurements. Although
we cannot entirely discount the possibility that changes in sampling
methods may introduce fractional bias, extensive sensitivity analyses
detailed below show that this is not responsible for the observed Chl
declines. Furthermore, the accuracy of CT as a proxy of surface Chl has
been independently verified4,5, and indicates that CT explains only
0.5–1.5% less of the variance in surface Chl than precision measure-
ments of water-leaving radiance (remotely sensed ocean colour)5.

Mackas2 and Rykaczewski and Dunne3 suggest that a systematic bias
between CT and CI combined with an unbalanced temporal sampling
effort may have influenced the direction of Chl trends. However, several
lines of evidence indicate that this is not the case. We adjusted CT using
the corrective algorithm suggested by Mackas (equations (2) and (3) in
ref. 2) and re-estimated Chl trends. This improved the agreement
between CT and CI (b 5 0.98; r2 5 0.6) and did not change the direction
of Chl trends in any of the regions. The magnitude of change varied in
some regions and the proportion of declining cells dropped from 59%
to 53%; however, our original conclusions remained valid. In our paper
we compared CT and CI using model II major axis regression, assuming
error in both variables (supplementary figure 2a in ref. 1). However, the
simulations performed by Rykaczewski and Dunne3 use our model II
regression parameters to predict simulated Chl values using model I
ordinary least squares (OLS) regression, which is based on a different
set of statistical assumptions and will therefore bias their analysis6.
There are two ways to avoid this problem. First, simulated values can
be computed using model I regression as Rykaczewski and Dunne3

have done, but using parameters estimated from a model I regression
of CT and CI matchups. Such model I analysis reveals that CT values are
lower on average than CI (b 5 0.83; r2 5 0.6); hence the simulation
should adjust CT measurements downward rather than upward as
Rykaczewski and Dunne3 have done. Alternatively, simulated values
can be computed using model II regression with the appropriate para-
meters of our fitted model1. The error introduced by application of an
inappropriate model is further highlighted by the observation that the
Chl trends simulated by Rykaczewski and Dunne (figure 2 in ref. 3)
appear opposite to our results1 across much of the ocean; for example,
their simulated declines in coastal areas were not reproduced by our
analyses (figure 2b in ref. 1). Furthermore, although Rykaczewski and
Dunne3 attribute Chl increases in the Indian Ocean to an increasing
proportion of CT measurements through time, we did not observe such
a pattern in our database: like other regions, both Indian basins show a
decreasing proportion of CT and an increasing proportion of CI

measurements through time. By removing all Chl measurements col-
lected in shelf regions (,200 m depth) the agreement between CT and
CI was further improved (b 5 1.016, n 5 11,329 matchups). Re-fitting
models to this filtered data set (n 5 283,681) did not alter the direction
of trends in any of the regions examined, nor did it change the local
trends, suggesting that the observed declines are robust. Lastly, our
statistical models reproduced with high fidelity the well-known
seasonal cycles of Chl in different regions and demonstrated clear
coherence between Chl and leading climate indicators; this would
not be expected if a systematic bias were confounding the data.

In a related comment, McQuatters et al.7 claim that the removal of
all CT observations changes the trends to positive in the Atlantic and
Pacific regions. We caution that comparing trends from CT or CI

individually may be misleading, as the length of time series, spatial
coverage and availability of data can be very different. However,
estimating trends using only CI measurements changed the Chl trend
to positive in the South Atlantic (P 5 0.10; 73% of all measurements)
and North Pacific (P , 0.05; 26% of all measurements) regions only.
Likewise, estimating trends since 1980 (as suggested by McQuatters et
al.7) did not affect the direction of change in any of the Atlantic
regions.

Furthermore, McQuatters et al.7 present Continuous Plankton
Recorder (CPR) colour index data indicating that phytoplankton
abundance in the North Atlantic has increased rather than decreased,
as we reported. However, there are important differences between the
CPR data and those used in our analysis, which may explain some of
the observed discrepancies. As McQuatters et al.7 mention, the CPR
retains the largest phytoplankton cells (.270 mm), and the vast
majority of phytoplankton cells—which are much smaller—are not
sampled quantitatively8. Thus a CPR-derived colour index may not be
strictly comparable to direct Chl or transparency measurements.
Additionally, the CPR data set almost exclusively contains measure-
ments sampled north of 40u latitude (figure 1a in ref. 7) and many
observations from inshore areas, which is contrary to our approach.
The suggested phytoplankton increase across the Atlantic is also not
supported by an independent analysis of in situ and satellite data
collected over similar timescales9.

McQuatters et al.7 also observe that some shorter-term (,20 yr)
localized time series show increases rather than decreases in Chl. We
do not dispute this but suggest that comparing such series to the
longer-term (.50 yr), basin-scale trends we report may be mislead-
ing. Ours1 and others’10–13 analyses demonstrate that large-scale, long-
term data sets are needed to isolate low-frequency trends from the
yearly to decadal fluctuations that are often driven by climate oscilla-
tions. Comparisons of ours and other long-term regional estimates
indicate broad agreement5,9,14. Furthermore, as we included the cited
BATS, HOTS and CalCOFI time series in our analysis, the important
contributions that these data make are fully accounted for. As shown
both in our paper (figure 2b in ref. 1), and in the CPR time series7,15,
phytoplankton has increased in some areas and thus it should not be
surprising that some time series reproduce this trend.

We welcome the critical suggestions offered by the authors and agree
that the inter-calibration of different Chl measurement techniques is
an ongoing and important topic. The above-mentioned requirement
for long time series, the relatively low coverage of historic Chl mea-
surements across the global oceans, and the multitude of available Chl
measurement techniques necessitate the use of synthetic Chl time
series for any global long-term analysis. Based on the extensive robust-
ness analyses reported here and previously, we conclude that the
observed global decline in Chl is independent of the data source used,
and is not biased as a result of combining transparency and in situ data.
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